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PROPERTIES OF MATTER 
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Moment of Inertia 

J.J. Momeni of ltkrtu. of O bod) bo 

of the produr t oft~ "'4SS and 1111 ~~ "' an ax_is is define1 as the sum 

tic/es o1 1h11 ~ -firom ,,.,4 A.-.s if Si/, of tht! disiance of different par-

. 'J vvu~ ""' -.. 0 r <>1a110 11 . A 

If a body of mau M is supJ)(Xed lo be made 

up ~( a large number of smatJ masses '"•. "'2· .... 

al distances r 1• r2 • •• • from che .uis of rotation 

Afl, then 
. 

The momenr of inertia 
, ".) 

I= m1 rj + ""r'i. + ... .... . . 

=Ln?. 
The SJ. unir of moment of inenia is kg • m2 

J.l. Radim al gyration of a body is the 6 

squa_re root of the mran .square distance of the Fla. J.l 

parucle.s of the body from IN axis of rotation . If 

lhe body is divided into n particles each of mass m and they lie at ilistances 

ri • '2 • ..... from I.he axis of rocation AB. then 
J 

R . . 
. (r; + li + ...... ·) 2 

adJ~ of gyrauon K = n 

It may also be defined as the distance of the point at which the whole 

m~s of the body may be concentrated so as to have the same moment of in­

.ertia. 

:. 
I= MK2• 

~ .~ moment of inertia pla~ lhe S3f!lC role in r~~naJ motion as mass 

~ s m IJnear motion. The SJ. unit of radius of gyration JS a metre. 

. J.J. £ ,nergy of rotation of a body. If a body rotates about an axis ~ 

\\'uh, an angular velocity <o. all its particles have the same angular velocity 
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but different linear velocities as they lie at different distances from the ~~1-
of ro~tion. Let _the linear velocities of f!1e particles of mass m1, 7ni, ... frorti '.­
the a,ns of rotation be v1, v2, ••••• respectively, then ;. 

Total kinetic energy of the body= Sum of the kinetic energy 
possessed by the various particles t 

I 

=~Im,2)002 
1 2 =-/ (J) 
2 

where / is the moment of inertia of the body about the axis AB. 

3.4. Values of moment of inertia. Moment of inertia of some regular : 
solids is given below : ; 

I 

(i) Circular d~c. The moment of inertia of a circular disc about an 
axis passing through its C.G. and perpendicular to its plane is given by ~ 

I 
I= -M? 

2 

where M is the mass of the disc and r its radius. 
r 

(ii) A rec~ngular bar. The moment of inertia of a rectangular bar; 
about an axis passing through its C.G. and perpendicular to the edges of' 
lr.ngth / and breadth b is given by · 

t2+b2 
I= M 12 

(iii) A right circular cylinder. The moment of inertia of a right cir·! 
lar cylinder of length/ and radius r about an axis through its C.G. and per-; 
ndicular to the axis of the cylinder is given by ' 

i 

(
,2 2) I 

/=Mu+~ j 

I 
/ 

(iv) A sphere. The moment of inertia of a sphere of radius r about a:, 
diameter is given by i 

t 
2 2 I = -Nlr 
5 . 

i 
3.S. Moment of inertia of a flywheel. A flywheel is simply a heaV)' 1 

wheel with a long axle supported in bearings such that it can rest in anY 
position. In other words, the C.G. lies on the axis of rotation. 
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'fo find the moment of in~rti~ of a flywheel a mass m is attached to the 
f the wheel by a cord which 1s wrapped several times round the axle as 

a"1:,: in Fig. 3.2. One end of the string is in the form of a loop so that it can 
sh0

. 
1 be attached to or de­

eash• yd from a pin A projecting tac e the ax le. The length of 
froJll · d' d h . the string 1s so a Juste t at 1t 

ets detached from the axle as 
g n as the bottom of the mass soo 
m is just to touch the floor. 

When the mass is allowed 
to fall, its potential energy is 
partly converted into the ki­
netic energy due to the velocity 
gained by it an~ partly into the 
energy of rotation of the tly-
whe~l. 

Let ro be the angular ve­

mg 

Fig. 3.2 

locity imparted to the wheel at the moment the mass mis detached. 
After the string has been detached from the wheel, the wheel continues 

to revolve for some time. Its angular velocity decreases on account of fric­
tion and finally the wheel comes to rest. If n 1 is the number of revolutions 
that the wheel makes in time t before coming to rest, then 

. 21tn1 Average angular velocity = --
. t 

If the frictional force is constant the rotation of the wheel is uniformly 
retarded. It begins with an angular velocity ro and its final angular velocity is 
zero, so that the initial velocity ro is double the average velocity. 

21tn1 41tn1 or co= 2x--
t t 

According to the principle of conservation of energy, when the string is 
detached 

P .E. of mass m = K.E. of mass m + K.E. of wheel 
+ Work done against friction. 

If h is the height through which the mass has fallen, then 
P.E. of mass m = mgh 

If r is the radius of the axle, then 
Linear velocity of mass m = rro 

and K.E. of mass m = .!.. m (rro)2 . 2 
If I is the moment of inertia of the wheel, then 
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1 2 K.E. of the wheel= 
2 

/ro 

. Let F be the energy per revolution used in overcomin~ the frictionai 
force. If n is the number of revolutions the wheel makes dunng the descent . 
of the mass m, then 

; Total energy used to overcome friction= nF r 
1 2 2 . 1 2 Hence mgh = 2 mr ro + 2 /ro + nF •·· (i) 

The kinetic energy possessed by the wheel is used up in overcoming 
friction. As the wheel comes to rest after making n 1 revolutions 

. . . 

or 

1 2 
n1F= '

2
lro 

1 1 2 F = --loo 
n1 2 . 

Substituting the value of F in (i), we have 

or 
I 

mgh = ½ mr2ro2 + ~ lro2 
( 1 + ;

1
) 

1 
._ 2mgh - m?ro2 

- ())2(} + o/nl) 

Experiment I. To rmd the moment of inertia of a fty-wbeel. 
Apparatus. A fly wheel, a few different masses and a mass provided 

with a hook, a strong and thin string, stop watch, a metre rod, a vernier cal-
lipers and a piece of chalk. 

Formula. Moment of inertia 

1 
_ 2mg h - m?ro2 

- ro2
(} + o/n1) 

Procedure. 1. Examine the wheel and see .that there is the least pos­
sible friction. Oil the bearings, if necessary. 

2. Measure the diameter of the axle with a vernier callipers at different 
points and find the mean. Measure also the circumference of the wheel W 
with a thread. 

3. Take a strong and thin string whose length is less than ·the height of 
the axle from the floor. Make a loop at its one end and slip it on the pin A on 
the axle. Tie a suitable mass to the other end of the string. Suspend·the mass 
by means of the string so that the loop is just on the point of. slipping from 
the pin A. Make a challc mark on the wheel behind the po~nter in this posi­
tion. Also note the position of the lower surface of the mass m on a scale 
fixed behin~ on the wall as at C. · · · 
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4. Now rotate. the_ wheel and wrap the string uniformly round the axle 

h t the mass mis shghtly below the rim of the wheel and the chalk k 
0 t a . h . p . mar 

~ ain opposite to t e pomter . Again note the position of the lower sur-
1s ag f the mass on the scale 
facet~- If now the mass is al­
as a ed to fa11, it will descend 

Ihow gh a height BC = h be­
t rou 
fore being detached from the 

. A Count the number of 
pIO . 
turns wound round the ax_le 

d Jet it be n. The wheel will 
~;us make n revolutions before 
the thread is detached. 

5. Hold a stop-watch in 
your hand and alJow the mass 
to descend. As soon as the 
sound of the weight striking 
the ground is heard. start the 
stop-watch. Count the number 
of revolutions n I made by the 
wheel before coming to rest 
with reference to the chalk 
mark and note the ti me t taken 
for the purpose. 

• 

.... 3.3 

It is possible that in addition to the complete rotations made by the 

wheel, there may be a fraction of the rotation. To estimate the fraction meas­

ure the distance along the circumference by which the chalk mark has ad­

vanced beyond the pointer P, by means of a thread. Divide.this distance by 

the circumference of the wheel W. Repeat three times for the same height 

and load. · 

6. Repeat the experiment with three different masses, suitably adjusting 

the height through which the mass falls so that the number of rotations made 

by the wheel can be easily counted. 
Observations. Vernier constant 

Dian1eter of the axle - (i) (ii) (iii) 

Mean diameter of the axle - m 

Radius of the axle r - m 

Circumference of the flywheel w - m 

Mass m - kg 

Height h - m 

Number of turns wound on axle n -
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SL 
No. 

1. 

2. 

3. 

B.Sc. Practical ,.,..Ys· 
lcl } 

No. of oom-
plete revolu-
tiona made 

by the wheel 
X 

Mean 

Mean time 

Distance of 
chalk mark 

from pointer 

:. Angular velocity 

Fraction of No. of revolutions revolution 
y 

41tn1 co= -­
t 

nl = X + y 

Moment of inertia of the flywheel I = 2mgh - ,,,,:Z.co
2 

n co 1 +-
nl 

Record observations (2) and (3) as above 

Mean moment of inertia / = kg - m2 

Time I, 

\ 

----......, 

--..... 

kg..,. m2 

Pr~autions. 1. There should be least possible friction in the flywheel. 

i 
I 

See that the flywheel starts of its own accord and no push is imparted to it. 
The mass tied to the end of the cord should be of such a value that it is able 
to overcome friction at the bearings and thus automaticalJy starts falling. 

2. The length of the string should be less than the height of the axle of 
the flywheel from the floor. 

3. The loop slipped over the pin sh~ld be loose enough to be detached 
easily. 

4. The string should be thin and should be wound evenly. 
5. The stop~watch should be started just when ~e string is detached. 
Source of error. (i) The angular velocity co has been calculated on the 

ssumption that the friction remains constant when the angular velocity 
Jecreases. from co to zero. In actual practice this is not the case because the 
friction increases as the velocity decreases. 

(ii) The instant at which the string is detached -cannot be correctly 
found out. · 
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