Master of Science in Mathematics (M.Sc. Maths)

Duration : 2 years

Total Seats : 60 (30+30)

Eligibility :

Admission shall be made on the basis of merit, subject to the fulfillment of the following conditions :

The Candidate must have passed B.A./B.Sc. (with Mathematics as a full subject) from Punjabi University, Patiala or  any  other recognized Indian University. Eligibility criteria will be same as given by Punjabi University, Patiala. The result of the candidate for qualifying class must be available at the time of interview/admission.

CURRICULUM :

Semester - I

MM 401       :      Mathematical Analysis

MM 402       :      Topology - I

MM 403       :      Algebra - I

MM 404       :      Differential Geometr

MM 405       :      Fundamental of Computer Science and C-Programming

MM 406        :      Software Laboratory (C-Programming)

Semester - II

MM 501        :      Differential Equations

MM 502        :      Functional Analysis

MM 503        :      Topology - II

MM 504        :      Complex Analysis

MM 505        :      Algebra-II (Rings and Modules)

Semester - III

Electives (Any five of the followings)

MM 601        :               Differentiable Manifolds

MM 602        :               Field Theory

MM 603        :               Differential Equations-II

MM 604        :               Category Theory-I

MM 605        :               Numerical Analysis

MM 606        :               Complex Analysis-II

MM 607        :               Classical Mechanics

MM 608        :               Algebraic Topology

MM 609        :               Analytic Number Theory

MM 610        :               Optimization Techniques

MM 611        :               Fuzzy Sets

Semester - IV

Electives (Any five of the followings)

MM 701        :               Homology Theory

MM 702        :               Theory of Linear Operators

MM 703        :               Geometry of Differentiable Manifolds

MM 704        :               Category Theory-II

MM 705        :               Homological Algebra

MM 706        :               Mathematical Methods

MM 707        :               Fluid Mechanics

MM 708        :               Algebraic Coding Theory

MM 709        :               Commutative Algebra

MM 710        :               Operation Research

MM 711        :               Wavelets

MM 712        :               Non Linear Programming

MM 7713      :               Topics in Topology and Analysis